

Two decades of application knowledge

For over two decades, various industry sectors have been reaping the benefits of L\&T's cost-effective, performance-oriented AC Drive solutions. L\&T's grasp of the specific needs of each industry enables it to offer application-specific solutions for various industries - such as processing, textile, plastic, ceramic, pharmaceutical, elevator, oil \& gas, power, cement and material-handling.

$S \times 2000$ AC Drive

 Parameters can be copied/loaded from the drive to the smart copier and vice versa - simply with the keypad. It produces a starting torque of 200% at 0.5 Hz , which provides better control at low-speed. Its compact size enables panel-size reduction, hence helps torque of 200% at 0.5 Hz , which provides better control at low-speed. Its compact size enables panel-size reduction, hence helspace-efficient design. It has safety features like Safe Torque Off (STO) with redundant input circuit which meet EN 61508 SIL 2
standards.

Smart AC Drive - new reliability edge

The $S \times 2000$ adds a new dimension to L\&T's AC drive solutions. Built to L\&T's stringent quality standards, the 5×2000 is tested and certified to meet global benchmarks, thus giving you the assurance of total reliability.
The 5×2000 is built to deliver powerful performance. It handles loads up to 75 kW (HD) / 90 kW (ND) - making it perfect for compressors, conveyors, machine tools, elevators, textiles, fans, pumps, plastic extruders, wire drawings, etc.

After-sales service aimed at maximum uptime

A malfunction of the drive can bring an entire assembly line or process to a halt. To ensure maximum uptime for you, our Rapid Response service team is available to analyze the situation and help you set the problem right. We have set up strategic service centres across the country to provide temporary replacement drives o ready spares to ensure that your business keeps running smoothly.

Rapid Response Service Team

Training your people to enhance your operations
At our countrywide Switchgear Training Centres, we can train your operators, electricians and supervisors to increase their effectiveness in the operation, maintenance and trouble-shooting of your drives. We can also conduct in-plant training and workshops at your premises to improve both power management and
equipment maintenance skills. This gives you total operational excellence, minimising downtime.

L\&T's engineers and channel partners also upgrade their skills through seminars, workshops, training sessions and white papers on electrical practices.

Features that ensure performance

S×2000

Smart. Space-efficient. Safer.
Built to deliver powerful performance, its smart features, compact size and safety features increase efficiency.

Specialized Features

sx2000 improves user convenience with a smart copier.

Functions without power input The drive does not need to be powered when using the smart copier.

LED lamp feedbacks
The run LED flickers during normal operation. The error LED flickers when events such as communication errors occur.

Read/Write function of parameters
Parameters can be copied/loaded from the drive
to the smart copier and vise versa, simply with the keypad.

Simple installation
I/O parameter and main firmware saved in the smart copier can be downloaded to both the drive $1 / \mathrm{O}$ and the control part Firmware can be downloaded from a PC by using a USB cable.

Peer 2 Peer function embedded

//O can be shared among master and slave drives. (RS485 wiring required).

Main capacitor lifecycle estimation

Estimated through monitoring the change in the capacitance value (fig 1).

Fan lifecycle estimation

Warning signal is displayed when fan is operated over a certain amount of hours (fig.2.)

Main capacitor lifecycle estimation

(Fig.1)

Fan lifecycle estimation

Powerful Performance

Sx2000 is a drive with enhanced sensorless control.

Space Efficient Design

The Sx2000 increases the efficiency of the control panel.

Safety Function

Sx2000 has built-in safety functions conforming to modern safety standards.

Built-in Safe Torque Off (STO)

The safety input function meets EN ISO 13849-1 PLd and EN 61508 SIL2 (EN60204-1, stop category 0).
This feature is standard and enables compliance with current safety standards.

User-Friendly

The Sx2000 offers a variety of conveniences to you.

Various field bus options - easy

to install and use.
You can connect to a variety of fieldbus networks
Easy maintenance and mounting
(1) Profibus-DP (2) Ethernet IP (3) Modbus TCP (4) CANopen

Simple cooling fan replacement
Tool-less replacement of cooling fan without dismantling the drive

Flange type
The heat sink can be mounted outside of the panel in case the space is limited

User sequence function

Simple PLC sequences can be operated with various function block combinations.

Multi-keypad function

Single LCD keypad can be used to set up th parameters of a RS485 connected drives.

- LCD keypad (same as Fx2000 model) enables handy parameter set up.
- Multi-language support will be available.

User-Friendly

Drive connect connection with RJ45 port

Standard Compliance
The Sx2000 complies with a diverse range of international standards.

Built-in DC reactor

Effective in improving power factor and decreasing THD.

- 3-phase $400 \mathrm{~V} 30 \sim 75 \mathrm{~kW}$

Global Compliance
Global standard compliance

Dual rating operation

Designed to be used for heavy and normal duty application
Overload capacity - Heavy duty operation: 150\% of rated current, 60 seconds

- Normal duty operation: 120% of rated current, 60 second

Selectable Rotary/Standstill auto-tuning
Standstill / Rotary auto-tuning options are available as standard to find motor constan with or without rotating the motor for optimised motor performance.

The drive for harsh environmental conditions.

Sx2000 IP66 / NEMA 4X Series

Protected against foreign substances such as fine dust and high pressure water spray

- Satisfies NEMA standard type 4 X for indoor use
- 230/415V 0.4~22kW

H

0
. Model \& Type

$\begin{gathered} \text { Motor } \\ \text { Rating } \\ \text { (Normal Duty) } \end{gathered}$	Single-Phase 230V	Three-Phase 230V		Three-Phase 415V	
	1 P 20	1 P 20	IP66	1 P 20	IP66
0.75 kw	LTVF-S10003BAA	LTVF-5200038A	LTVF-520003XA	LTVE-S40028AA	LTVF-S40002XAA
1.5 kw	LTv-S50006BAA	LTVF-520006AA	LTVF-520006XA	LTVF-S40003BAA	LTVF-540003XAA
2.2 kW	LTVE-S10010BAA	LTVF-5200108AA	LTVF-520010XAA	LTVFS40005BAA	LTVFSS40005XAA
3.7 kw	LTVF-S10012BAA	LTVF-5200128AA	LTVF-520012XAA	LTVF-S40007BAA	LTVF-S40007XAA
5.5 kW		LTVF-5200188AA	LTVF-520018XA	LTVE-S400108AA	Lrve-S40010xAA
7.5 kw		LTVF-520030BAA	LTVF-52003xAA	LTVF-S40016BAA	LTVE-S40016XAA
11 kw		LTVF-5200008A	LTVF-520040xA	LTve-S40023BaA	LTve-S40023XAA
15 kW		LTVE-520056AA	LTVF-520056xA	LTVF-S40038BAA	Lrve-S40030XAA
18.5 kW		LTVF-S200698A	LTVF-520069XA	LTVF-S400388AA	LTVES40038XAA
22 kw				LTve-S40044BaA	LTVE-S40044xAA
30 kw				LTVF-S400588AA	LTVES40058XAA
37 kw				LTVES40075BAA	
45 kW				Ltve-S400918aA	
55 kw				LTve-S40107BaA	
75 kw				LTVE-S401428aA	
90 kw				LTVE-S401698AA	

Input and output specification: Single-phase 230V (0.4 kW HD ~ 2.2 kW ND)

Lvv-si $\square \square \square \square$ ba			0003	0006	0010	0012
$\begin{gathered} \text { Motor } \\ \text { Rating } \end{gathered}$	Heavy Duty (HD)	HP	0.5	1.0	2.0	3.0
		kw	0.4	0.75	1.5	2.2
	Normal Duty (ND)	HP	1.0	2.0	3.0	5.0
		kw	0.75	1.5	2.2	3.7
$\begin{aligned} & \text { Output } \\ & \text { Rating } \end{aligned}$	$\begin{aligned} & \text { Capacity } \\ & {[k V A]} \end{aligned}$	Heary Duty (HD)	1.0	1.9	3.0	4.2
		Normal Duty (ND)	1.2	2.3	3.8	4.6
	Rated	Heary Duty (HD)	2.5	5.0	8.0	11.0
		Normal Duty (ND)	3.1	6.0	9.6	12.0
	Frequenc [$H z]$		0~400Hz (IM Sensorless : $0 \sim 120 \mathrm{Hzz}$)			
	Voltage [V]		3-phase 200~240V			
$\begin{aligned} & \text { Inut } \\ & \text { Rating } \end{aligned}$	Voltage [V]		1-phase 200-240VAC (-15\% ~ + 10%)			
	Freauenc [Hz]		50-60Hz (5 5\%)			
	RatedCurrent [A]	Heay Duty (HD)	4.4	9.3	15.6	21.7
		Normal Duty (ND)	5.8	11.7	19.7	24.0

Input and output specification: Three-phase 230V (0.4 kW HD ~ 18.5 kW ND)

LivF-S2■			0003	0006	0010	0012	0018	0030	0040	0056	0069
$\begin{aligned} & \text { Motor } \\ & \text { Rating } \end{aligned}$	Heavy Duty (HD)	HP	0.5	1.0	2.0	3.0	5.4	7.5	10.0	15.0	20.0
		kw	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11.0	15.0
	$\begin{aligned} & \text { Normal } \\ & \text { Duty (ND) } \end{aligned}$	HP	1.0	2.0	3.0	5.0	7.5	10.0	15.0	20.0	25.0
		kw	0.75	1.5	2.2	3.7	5.5	7.5	11.0	15.0	18.5
OutputRating	$\begin{aligned} & \text { Capacity } \\ & \text { [kNal] } \end{aligned}$	Heary Duty (HD)	1.0	1.9	3.0	4.2	6.5	9.1	12.2	17.5	22.9
		Normal Duty (ND)	1.2	2.3	3.8	4.6	6.9	11.4	15.2	21.3	26.3
	Rated Current	Heary Duty (HD)	2.5	5.0	8.0	11.0	17.0	24.0	32.0	46.0	60.0
		Normal Duty (ND)	3.1	6.0	9.6	12.0	18.0	30.0	40.0	56.0	69.0
	Frequency [Hz]		0~400Hz (IM Sensoress : $0 \sim 120 \mathrm{~Hz}$)								
	Voltage [V]		3 -phase 200~240V								
${ }^{\text {Input }}$ Rating	Voltage [V]		3-phase 200~-240VAC (-15\% $\sim+10 \%)$								
	Frequenc [$H z]$		$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$								
	Rated Current [A]	Heary Duty (HD)	2.2	4.9	8.4	11.8	18.5	25.8	34.9	50.8	66.7
		Normal Dut (ND)	3.0	6.3	10.8	13.1	19.4	32.7	44.2	62.3	77.2

[^0]Input and output specification Three-phase 415V (0.4 kW HD ~ 30 kW ND)

			0002	0003	0005	0007	0010	0016	0023	0030	0038	0044	0058
Motor Rating	Heavy Duty (HD)	HP	0.5	1.0	2.0	3.0	5.4	7.5	10.0	15.0	20.0	25.0	30.0
		kw	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11.0	15.0	18.5	22.0
	Normal Duty (ND)	HP	1.0	2.0	3.0	5.0	7.5	10.0	15.0	20.0	25.0	30.0	40.0
		kw	0.75	1.5	2.2	3.7	5.5	7.5	11.0	15.0	18.5	22.0	30.0
OutputRating	$\begin{aligned} & \text { Capacity } \\ & \text { [kVA] } \end{aligned}$ [kVA]	Heary Duty (HD)	1.0	1.9	3.0	4.2	6.5	9.1	12.2	18.3	22.9	29.7	34.3
		Normal Dut (ND)	1.5	2.4	3.9	5.3	7.6	12.2	17.5	22,9	29.0	33.5	44.2
	$\begin{aligned} & \text { Rated } \\ & \text { Curen } \end{aligned}$	Heary Duty (HD)	1.3	2.5	4.0	5.5	9.0	12.0	16.0	24.0	30.0	39.0	45.0
		Normal Duty (ND)	2.0	3.1	5.1	6.9	10.0	16.0	23.0	30.0	38.0	44.0	58.0
	Frequency $[\mathrm{Hz}]$		$0 \sim 400 \mathrm{~Hz}$ (IIM Sensorless : $0 \sim \sim 120 \mathrm{~Hz}$)										
	Voltage [V]		3-phase 380-480V										
$\begin{aligned} & \text { nnput } \\ & \text { Rating } \end{aligned}$	Voltage [V]		3-phase 380-480VAC (-15\% ~ + 10%)										
	Frequency [Hz]		50~60H2 (55%)										
	Rated Current [A]	Heary Duty (HD)	1.1	2.4	4.2	5.9	9.8	12.9	17.5	26.5	33.4	43.6	50.7
		Normal Dut (ND)	2.0	3.3	5.5	7.5	10.8	17.5	25.4	33.4	42.5	49.5	65.7

Input and output specification: Three-phase 415V (30 kW HD ~ 90 kW ND)

Lvv-s4 $\square \square \square \square$ ba			0075	0091	0107	0142	0169
MotorRating	$\begin{aligned} & \text { Heary } \\ & \text { Duty (HD) } \end{aligned}$	HP	40.0	50.0	60.0	75.0	100.0
		kw	30.0	37.0	45.0	55.0	75.0
	Normal Duty (ND)	HP	50.0	60.0	75.0	100.0	120.0
		kw	37.0	45.0	55.0	75.0	90.0
OutputRating	$\begin{aligned} & \text { Capacity } \\ & \text { [kNA] } \end{aligned}$	Heary Duty (HD)	46.5	57.2	69.4	83.8	115.8
		Normal Duty (ND)	57.2	69.4	81.5	108.2	128.8
	RatedCurrent	Heary Duty (HD)	61.0	75.0	91.0	110.0	152.0
		Normal Dut (ND)	75.0	91.0	107.0	142.0	169.0
	Frequenc (Hz]		0-400Hz (IM Sensorless : $0 \sim 120 \mathrm{~Hz}$)				
	Voltage [V]		3-phase 380-480V				
InputRating	Votage [V]		3-phase 380-480VAC (-15\% $\sim+10 \%$)				
	Frequeny [Hz]		50-60Hz ($\pm 5 \%$)				
	Rated Current [A]	Heary Duty (HD)	56.0	69.0	85.0	103.0	143.0
		Normal Dut (ND)	69.0	85.0	100.0	134.0	160.0

- Maximum applicable capacity is isdicicted in case of using 4 -pople standard motor (230 and 415 V Classes are based on 220 and 400 V respectivel).
- For the reted capacity, 233 and 415 V class input capacaties are based on 220 and 440 V respectivel.

Control

Control Method	VIf, Slip compensation, Sensorless vector
Frequency Setting Resolution	Digital command: $0.01 \mathrm{~Hz} /$ Analog command: 0.05 Hz (maximum frequency: 50 Hz)
Frequency Accuracy	1\% of the maximum output frequency
VIF Pattern	Linear Squared, UserV/F
Overload Capacity	HD: $150 \% 1$ minute, ND: $120 \% 1$ minute
Torque Boost	Manual/Automatic torque boost

Operation

Operation Mode		Keypad / Terminal / Communication option selectable	
Frequency Setting			
Operation Function		PID control, 3-wire operation, frequency limit, second function, anti-forward and reverse direction rotation, commercial transition, speed search, power braking, leakage reduction, up-down operation, DC braking, frequency jump, slip compensation, automatic restart, automatic tuning, energy buffering, flux braking, fire mode	
Input		NPN (Sink) / PNP (Source) Selectable	
	Multi-function Terminal Standard I/O (5 points) Multiple I/O (7 points)	Function: Forvard run, reverse run, reset, external trip, emergency stop, jog operation, multistep frequencyhigh, middele, Iow, mult-step acceleration/ deceleration-high, middele, Iow, DC braking a t stop, 2nd motor select, frequency ypldown, 3 -wire operation, change into normal operation during PID operation, change into main body operation during option operation, analog command frequency fixing, acceleration/deceleration stop etc. selectable.	
	Analog Input	V1:-10 ~ ~ OV selectable 2 2: $0 \sim 10 \mathrm{~V} / 124 \sim 20 \mathrm{~mA}$	
	Pulse Train	OHz-32kHz, Low level: $0 \sim 0.8 \mathrm{~V}$, High level : $3.5 \sim 12 \mathrm{~V}$	
Output	Open Collector Terminal	Fault output and drive operation status output	less than DC 24V50mA
	Multi-function Relay		(N.O., N.C.) less than AC 250V 1A, less than DC 30 V 1 A
	Analog Output	Selectable AO; V: $\sim \sim 10 \mathrm{~V} / \sim \sim 2 \mathrm{~mA}$; Fequency, Output current, Output voltage, DC stage voltage etc. Slectable	
	Pulse Train	Maximum 32kHz, 10~-12 [V]	

Protective Function

Trip	Over-curent trip, extermal signal t tip, ARM short icruit current trip, verheat trip, Input imaging trip, ground trip, motor over heat trip, IVO bard link trip, No motort trip, parameter witing trip, emergency stop trip, command loss trip exteral memory eroor CPU wathdog trip, motor normal load trip. over voltage tipip.temperature sensor trip, trip, Iow voltage trip during operation, low voltage trip, sfafty $A(B)$ trip, analog input error motor veveload trip.
Alarm	Command loss trip alarm, overload alarm, normal load alarm, drive overload alarm, fan operation alarm, resistance braking rate alarm, number of corrections on rotor tuning error
Momentary Power Loss	HD below 15 ms (ND below 8ms): Continuous operation (To be within rated input voltage, rated output) HD above 15 ms (ND above 8 ms): Automatic restart operation enable

) Environment

Cooling Type	Forced fan cooling structure Forced cooling type : 0.4-15 kW 200V/0.4-22 kW 400V (excluding some models)
Protection Degree	IP20/UL Open (Defaut, UL Enclosediype 1 (Option), PP66/NEMA 4X (Option)
Ambient Temperature	Ambient temperature under the condition of no ice or frost. $\mathrm{HD}:-10 \sim 50^{\circ} \mathrm{C} / \mathrm{ND}:-10 \sim 40^{\circ} \mathrm{C}$ [However, recommended to use load below 80% when using at $50^{\circ} \mathrm{C}$ under Normal Duty]
Storage Temperature	$-20 \sim 65$ degres C
Humidity	Relative humidity below $90 \% \mathrm{RH}$ (no dew formation)
Altitude, Viration	Below 1,000m, below 5.9m/sec2 (0.66)
Location	No corrosive gas, flammable gas, oil mist etc. indoors (pollution degree 2 environment)
Pressure	$70 \sim 106 \mathrm{KPa}$

Power Terminal Specifications

Drive Cat. No.		Screw	${ }^{1)}$ Torque $\mathrm{Kgf} \cdot \mathrm{cm}$	${ }^{2)}$ Wire				
		mm2		awg				
				R.S.T	u.v.w	R.S.T	u.v.w	
230 V Single Phase	LTVES10003BAA		M3.5	$2.1 \sim 6.1$	2	2	14	14
	LTVESS10006BAA	M3.5	$2.1 \sim 6.1$	2	2	14	14	
	LTV-S100108AA	M3.5	$2.1 \sim 6.1$	2	2	14	14	
	LTV-S10012BAA	M4	$2.1 \sim 6.1$	3.5	3.5	12	12	
230 V Three Phase	LTV-S20003BAA	M3.5	$2.1 \sim 6.1$	2	2	14	14	
	LTV-S20006BAA	M3.5	$2.1 \sim 6.1$	2	2	14	14	
	LTV-S20010BAA	M3.5	$2.1 \sim 6.1$	2	2	14	14	
	LTV-S20012BAA	M4	$2.1 \sim 6.1$	3.5	3.5	12	12	
	LTVF-5200188AA	M4	$2.1 \sim 6.1$	3.5	3.5	12	12	
	LTV-S200308AA	M4	$2.1 \sim 6.1$	6	6	10	10	
	LTV-S200408AA	M4	$2.1 \sim 6.1$	6	6	10	10	
	LTV-S20056BAA	м5	$4.0 \sim 10.2$	10	10	8	8	
	LTV-5200698AA	м5	$4.0 \sim 10.2$	16	16	6	6	
415V Three Phase	LTV-S40002BAA	M3.5	$2.1 \sim 6.1$	2	2	14	14	
	LTVFS40003BAA	M3.5	$2.1 \sim 6.1$	2	2	14	14	
	LTVF-S40005BAA	M3.5	$2.1 \sim 6.1$	2	2	14	14	
	LTVF-S40007BAA	M3. 5	$2.1 \sim 6.1$	2	2	14	14	
	LTVF-S40010BAA	M4	$2.1 \sim 6.1$	2	2	14	14	
	LTV-S40016BAA	m4	$2.1 \sim 6.1$	2.5	2.5	14	14	
	LTVF-S40023BAA	m4	$2.1 \sim 6.1$	4	4	12	12	
	LTVF-S400308AA	м5	$4.0 \sim 10.2$	4	4	12	12	
	LTVF-S400388AA	м5	$4.0 \sim 10.2$	6	6	10	10	
	LTVFSS40044BAA	м5	$4.0 \sim 10.2$	10	10	8	8	
	LTVF-S400588AA	м5	$4.0 \sim 10.2$	16	10	8	8	
	LTVF-S40075BAA	м8	$61.2 \sim 91.8$	25	25	4	4	
	LTVF-S40091BaA	м8	61.2 ~91.8	25	25	4	4	
	LTVFS50107BaA	м8	$61.2 \sim 91.8$	70	70	110	110	
	LTVFSS401428AA	M8	$61.2 \sim 91.8$	70	70	110	110	
	LTVFS501698AA	м8	$61.2 \sim 91.8$	70	70	10	110	

Standard Connection Diagram [0.4~22kW]

Control Terminal Configuration

30~75kW

$\stackrel{P 1}{P 1}$	St	s-	SG	A_{2}	C2	NC	NC	P5	P6	P7	cm	VR	v_{1}	12	A01	то	CM
$\underset{\text { Pitch } 5 m m}{\leftrightarrow}$		B1	C1	Q1	EG	SA	SB	SC	24	P1	${ }^{\text {P2 }}$	P3	P4	CM	A02	π	cm

Terminal Iype	Recommended Wire Size [mm2] (AWG)		Screw	Torque	Electrical Specifications
	No Crimp-style Terminal	Crimp-style Terminal		N.m	
P1~P7, cm	0.75 (18)	0.5 (20)	м2	$0.22 \sim 0.25$	
vR					Max outputVI: 12V, 1008A, volume resistor 1 15 K
v_{1}					UNIPOLAR : $0 \sim 10 \mathrm{~V}$ (max12V) BIPOLAR : $-10 \sim 10 \mathrm{~V}(\max \pm 12 \mathrm{~V})$
12					4-20mA(max 0-24mA, input resitor 249Ω.
A01					$0 \sim 10 \mathrm{~V}$ (max output VII: 12V, 10mA) $0 \sim 20 \mathrm{~mA}$ (Load resistor less than 500Ω, max output current: 24 mA)
A02					$0 \sim 10 \mathrm{~V}$ (max output VI: $12 \mathrm{~V}, 10 \mathrm{~mA}$)
Q1					Less than DC 26y 100 mA
EG					
24					Max output curent: 150mA
π					$\begin{gathered} 0 \sim 32 \mathrm{KHz} \text { (Low Level : } 0 \sim 0.8 \mathrm{VV} \\ \quad \text { High Level : } 3.5 \sim 12 \mathrm{~V}) \end{gathered}$
то					0~32kHz, $0 \sim 12 \mathrm{~V}$
SA, sb, sc"					Less than DC 24V25mA
St, S5, 5G					
A1,B1,C1	1.0(17)	${ }^{1.5(5)}$	м2. 6	0.4	Less than AC250V 1A, less than DC30V 1 A
A2, C2					Less than AC250V 5A, less than DC30V5A

Keypad Details

Display	Term	Function Description	
10\%	RUN Key	Run command	
	STOPRRESET Key	SToP: Stop command during operation, RESEE Reset command when a fault occurs.	
	UP Key	Used to scroll through codes or to increase a parameter value	
	Down Key	Used to scroll through codes or to decrease a parameter value	
<	Left Key	Used to jump to other parameter groups or move the cursor to the left	
	Right Key	Used to jump to other parameter groups or move the cursor to the right	
	Enter Key	Used to seta a parameter value or to save the changed parameter value	
	Escape Key	Used to cancel the jog or remotellocal change key or when editing	
Fwo	Forward Run	Illuminated during forward un	Flickering when a fault occurs
REV	Reverse Run	Illuminated during reverse run	
RUN	Run Key	Illuminated during operation flickering during acceleration/deceleration)	
SEt	Setting	Illuminated during parameter seting/filicering when the ESC key is operating as multi-key	
7 -Segment	Curent value	Indicates operating conditions and parameter data	

Braking Resistors

Drive Cat. No	415VThree-Phase		
	Braking Unit	Resistor [ohm]	Watt [w]
LTVF-S40002BAA	Built-in	1,200	100
LTV-S40003BAA	Built-in	600	150
LTVF-S40005BAA	Built-in	300	300
LTVFS40007BAA	Built-in	200	400
LTVFS40010BAA	Built-in	130	600
LTVF-S40016BAA	Built-in	85	1,000
LTVF-S40023BAA	Built-in	60	1,200
LTVFS400308AA	Built-in	40	2,000
LTVF-S400388AA	Built-in	30	2,400
LTVFS59044BaA	Built-in	20	3,600
LTV-S400588AA	Builtin	20	3,600
LTVF-S40075BAA	LTDBU-0370	16.9	6,400
Ltv-S40091BaA	LTDBU-0370	16.9	6,400
Ltves40107BaA	LTDBU-0550	11.4	9,600
LTVF-S401428AA	LTDBU-0550	11.4	9,600
LTVFS501698AA	LTDBU-0750	8.4	12,800

MCCB (Moulded Case Circuit Breaker) and MC (Magnetic Contactor)

Drive Cat. No.	MCCB (LRT)	MC Amp (LRT)	Drive Cat. No.	MCCB (LRT)	MC Amp (LRT)
Ltv-S10003BAA	DM16/5	mNX9-2P	LTve-540002BAA	DM1612.5	моя
LTV-SI0006BAA	DM16/10	Mnx 12-2P	LTV-S40003BAA	DM16/5	мо9
LTVF-S100108AA	DM16/16	M ${ }^{1818-2 P}$	LTVE-S40005BAA	DM16/10	мо9
LTVF-S10012BAA	DM10025	mvx $22-2 \mathrm{P}$	LTVF-S40007BAA	DM16/12	m0 12
LTVF-52003BAA	DM16/5	мо9	LTVE-S40010BAA	DM100125	м0 18
LTVF-52006BAA	DM16/10	м0 12	LTVF-540016BAA	DM10030	м0 25
LTVF-S20010BAA	DM16/16	мо 18	LTVF-S40023BAA	DM100135	м0 32
LTVF-520012BAA	DM10025	M0 25	LTVF-S40030BAA	DM100660	м0 50
LTVF-5200188AA	DM10035	м0 32	LTVF-5400388AA	DM10070	мо 70
LTVF-5200308AA	DM10050	мо 60	LTVE-S40048BAA	DM100880	мо 80
LTVF-5200408AA	DM10070	мо 70	LTVF-540058BAA	DN2-250M/ 100	м095
LTVF-520056BAA	DN2-250M/100	м095	LTVF-S40075BAA	DN2-250M / 125	m095
LTVF-S200688A	DN2-250M125	MnX 140	LTVE-5400918AA	DN2-250M / 160	mnx 140
			LTVF-S401078AA	DN2-250M / 160	mnx 140
			LTVF-5401428AA	DN2-250M / 200	mnx 185
			LTVF-S401698AA	DN3-400M / 320	mnx 225

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Naximum applicable capacity is indidicted in case of using a 4-pole standard motor (230 and 415V Classes re based on 220 and 440V respectivel).
 For the rated capacity, 230 and $415 V$ Class input capactities are based on 220 and 440 V respectivel)

